Remote sensing and image interpretation / Thomas M. Lillesand, Emeritus, University of Wisconsin-Madison, Ralph W. Kiefer, Emeritus, University of Wisconsin-Madison, Jonathan W. Chipman, Dartmouth College.

Saved in:
Bibliographic Details
Edition:Seventh edition.
Published: Hoboken, N.J. : John Wiley & Sons, Inc., [2015]
Online Access:
Connect to electronic resource (Access limited to 3 simultaneous users)
Main Author:
Other Authors:
Subjects:
Format: Electronic eBook
Table of Contents:
  • Machine-generated contents note: 1.1. Introduction
  • 1.2. Energy Sources and Radiation Principles
  • 1.3. Energy Interactions in the Atmosphere
  • 1.4. Energy Interactions with Earth Surface Features
  • 1.5. Data Acquisition and Digital Image Concepts
  • 1.6. Reference Data
  • 1.7. The Global Positioning System and Other Global Navigation Satellite Systems
  • 1.8. Characteristics of Remote Sensing Systems
  • 1.9. Successful Application of Remote Sensing
  • 1.10. Geographic Information Systems (GIS)
  • 1.11. Spatial Data Frameworks for GIS and Remote Sensing
  • 1.12. Visual Image Interpretation
  • 2.1. Introduction
  • 2.2. Early History of Aerial Photography
  • 2.3. Photographic Basics
  • 2.4. Film Photography
  • 2.5. Digital Photography
  • 2.6. Aerial Cameras
  • 2.7. Spatial Resolution of Camera Systems
  • 2.8. Aerial Videography
  • 2.9. Conclusion
  • 3.1. Introduction
  • 3.2.

  • Basic Geometric Characteristics of Aerial Photographs
  • 3.3. Photographic Scale
  • 3.4. Ground Coverage of Aerial Photographs
  • 3.5. Area Measurement
  • 3.6. Relief Displacement of Vertical Features
  • 3.7. Image Parallax
  • 3.8. Ground Control for Aerial Photography
  • 3.9. Determining the Elements of Exterior Orientation of Aerial Photographs
  • 3.10. Production of Mapping Products from Aerial Photographs
  • 3.11. Flight-Planning
  • 3.12. Conclusion
  • 4.1. Introduction
  • 4.2. Across-Track Scanning
  • 4.3. Along-Track Scanning
  • 4.4. Example Across-Track Multispectral Scanner and Imagery
  • 4.5. Example Along-Track Multispectral Scanner and Imagery
  • 4.6. Geometric Characteristics of Across-Track Scanner Imagery
  • 4.7. Geometric Characteristics of Along-Track Scanner Imagery
  • 4.8. Thermal Imaging
  • 4.9. Thermal Radiation Principles
  • 4.10. Interpreting Thermal Imagery
  • 4.11^

  • Radiometric Calibration of Thermal Images and Temperature Mapping
  • 4.12. FLIR Systems
  • 4.13. Hyperspectral Sensing
  • 4.14. Conclusion
  • 5.1. Introduction
  • 5.2. General Characteristics of Satellite Remote Sensing Systems Operating in the Optical Spectrum
  • 5.3. Moderate-Resolution Systems
  • 5.4. Landsat-1 to -7
  • 5.5. Landsat-8
  • 5.6. Future Landsat Missions and the Global Earth Observation System of Systems
  • 5.7. SPOT-1 to -5
  • 5.8. SPOT-6 and -7
  • 5.9. Evolution of Other Moderate-Resolution Systems
  • 5.10. Moderate-Resolution Systems Launched prior to 1999
  • 5.11. Moderate-Resolution Systems Launched since 1999
  • 5.12. High-Resolution Systems
  • 5.13. Hyperspectral Satellite Systems
  • 5.14. Meteorological Satellites Frequently Applied to Earth Surface Feature Observation
  • 5.15. NOAA POES Satellites
  • 5.16. JPSS Satellites
  • 5.17. GOES Satellites
  • 5.18^
  • 4.11^

  • Ocean-Monitoring Satellites
  • 5.19. Earth-Observing System
  • 5.20. Space Station Remote-Sensing
  • 5.21. Space Debris
  • 6.1. Introduction
  • 6.2. Radar Development
  • 6.3. Imaging Radar System Operation
  • 6.4. Synthetic Aperture Radar
  • 6.5. Geometric Characteristics of Radar Imagery
  • 6.6. Transmission Characteristics of Radar Signals
  • 6.7. Other Radar Image Characteristics
  • 6.8. Radar Image Interpretation
  • 6.9. lnterferometric Radar
  • 6.10. Radar Remote Sensing from Space
  • 6.11. Seasat-1 and the Shuttle Imaging Radar Missions
  • 6.12. Almaz-1
  • 6.13. ERS, Envisat, and Sentinel-1
  • 6.14. JERS-1, ALOS, and ALOS-2
  • 6.15. Radarsat
  • 6.16. TerraSAR-X, TanDEM-X, and PAZ
  • 6.17. The COSMO-SkyMed Constellation
  • 6.18. Other High-Resolution Spaceborne Radar Systems
  • 6.19. Shuttle Radar Topography Mission
  • 6.20. Spaceborne Radar System Summary
  • 6.21. Radar Altimetry^^^

  • 6.22. Passive Microwave Sensing
  • 6.23. Basic Principles of Lidar
  • 6.24. Lidar Data Analysis and Applications
  • 6.25. Spaceborne Lidar
  • 7.1. Introduction
  • 7.2. Preprocessing of Images
  • 7.3. Image Enhancement
  • 7.4. Contrast Manipulation
  • 7.5. Spatial Feature Manipulation
  • 7.6. Multi-Image Manipulation
  • 7.7. Image Classification
  • 7.8. Supervised Classification
  • 7.9. The Classification Stage
  • 7.10. The Training Stage
  • 7.11. Unsupervised Classification
  • 7.12. Hybrid Classification
  • 7.13. Classification of Mixed Pixels
  • 7.14. The Output Stage and Post-Classification Smoothing
  • 7.15. Object-Based Classification
  • 7.16. Neural Network Classification
  • 7.17. Classification Accuracy Assessment
  • 7.18. Change Detection
  • 7.19. Image Time Series Analysis
  • 7.20. Data Fusion and GIS Integration
  • 7.21. Hyperspectral Image Analysis
  • 7.22^Radar Altimetry^^^

  • Biophysical Modelling
  • 7.23. Conclusion
  • 8.1. Introduction
  • 8.2. Land Use/Land Cover Mapping
  • 8.3. Geologic and Soil Mapping
  • 8.4. Agricultural Applications
  • 8.5. Forestry Applications
  • 8.6. Rangeland Applications
  • 8.7. Water Resource Applications
  • 8.8. Snow and Ice Applications
  • 8.9. Urban and Regional Planning Applications
  • 8.10. Wetland Mapping
  • 8.11. Wildlife Ecology Applications
  • 8.12. Archaeological Applications
  • 8.13. Environmental Assessment and Protection
  • 8.14. Natural Disaster Assessment
  • 8.15. Principles of Landform Identification and Evaluation
  • 8.16. Conclusion.