Remote sensing and image interpretation / Thomas M. Lillesand, Emeritus, University of Wisconsin-Madison, Ralph W. Kiefer, Emeritus, University of Wisconsin-Madison, Jonathan W. Chipman, Dartmouth College.
Saved in:
Edition: | Seventh edition. |
---|---|
Published: |
Hoboken, N.J. :
John Wiley & Sons, Inc.,
[2015]
|
Online Access: | |
Main Author: | |
Other Authors: | |
Subjects: | |
Format: | Electronic eBook |
Table of Contents:
- Machine-generated contents note: 1.1. Introduction
- 1.2. Energy Sources and Radiation Principles
- 1.3. Energy Interactions in the Atmosphere
- 1.4. Energy Interactions with Earth Surface Features
- 1.5. Data Acquisition and Digital Image Concepts
- 1.6. Reference Data
- 1.7. The Global Positioning System and Other Global Navigation Satellite Systems
- 1.8. Characteristics of Remote Sensing Systems
- 1.9. Successful Application of Remote Sensing
- 1.10. Geographic Information Systems (GIS)
- 1.11. Spatial Data Frameworks for GIS and Remote Sensing
- 1.12. Visual Image Interpretation
- 2.1. Introduction
- 2.2. Early History of Aerial Photography
- 2.3. Photographic Basics
- 2.4. Film Photography
- 2.5. Digital Photography
- 2.6. Aerial Cameras
- 2.7. Spatial Resolution of Camera Systems
- 2.8. Aerial Videography
- 2.9. Conclusion
- 3.1. Introduction
- 3.2.
- Basic Geometric Characteristics of Aerial Photographs
- 3.3. Photographic Scale
- 3.4. Ground Coverage of Aerial Photographs
- 3.5. Area Measurement
- 3.6. Relief Displacement of Vertical Features
- 3.7. Image Parallax
- 3.8. Ground Control for Aerial Photography
- 3.9. Determining the Elements of Exterior Orientation of Aerial Photographs
- 3.10. Production of Mapping Products from Aerial Photographs
- 3.11. Flight-Planning
- 3.12. Conclusion
- 4.1. Introduction
- 4.2. Across-Track Scanning
- 4.3. Along-Track Scanning
- 4.4. Example Across-Track Multispectral Scanner and Imagery
- 4.5. Example Along-Track Multispectral Scanner and Imagery
- 4.6. Geometric Characteristics of Across-Track Scanner Imagery
- 4.7. Geometric Characteristics of Along-Track Scanner Imagery
- 4.8. Thermal Imaging
- 4.9. Thermal Radiation Principles
- 4.10. Interpreting Thermal Imagery
- 4.11^
- Radiometric Calibration of Thermal Images and Temperature Mapping
- 4.12. FLIR Systems
- 4.13. Hyperspectral Sensing
- 4.14. Conclusion
- 5.1. Introduction
- 5.2. General Characteristics of Satellite Remote Sensing Systems Operating in the Optical Spectrum
- 5.3. Moderate-Resolution Systems
- 5.4. Landsat-1 to -7
- 5.5. Landsat-8
- 5.6. Future Landsat Missions and the Global Earth Observation System of Systems
- 5.7. SPOT-1 to -5
- 5.8. SPOT-6 and -7
- 5.9. Evolution of Other Moderate-Resolution Systems
- 5.10. Moderate-Resolution Systems Launched prior to 1999
- 5.11. Moderate-Resolution Systems Launched since 1999
- 5.12. High-Resolution Systems
- 5.13. Hyperspectral Satellite Systems
- 5.14. Meteorological Satellites Frequently Applied to Earth Surface Feature Observation
- 5.15. NOAA POES Satellites
- 5.16. JPSS Satellites
- 5.17. GOES Satellites
- 5.18^
- 4.11^
- Ocean-Monitoring Satellites
- 5.19. Earth-Observing System
- 5.20. Space Station Remote-Sensing
- 5.21. Space Debris
- 6.1. Introduction
- 6.2. Radar Development
- 6.3. Imaging Radar System Operation
- 6.4. Synthetic Aperture Radar
- 6.5. Geometric Characteristics of Radar Imagery
- 6.6. Transmission Characteristics of Radar Signals
- 6.7. Other Radar Image Characteristics
- 6.8. Radar Image Interpretation
- 6.9. lnterferometric Radar
- 6.10. Radar Remote Sensing from Space
- 6.11. Seasat-1 and the Shuttle Imaging Radar Missions
- 6.12. Almaz-1
- 6.13. ERS, Envisat, and Sentinel-1
- 6.14. JERS-1, ALOS, and ALOS-2
- 6.15. Radarsat
- 6.16. TerraSAR-X, TanDEM-X, and PAZ
- 6.17. The COSMO-SkyMed Constellation
- 6.18. Other High-Resolution Spaceborne Radar Systems
- 6.19. Shuttle Radar Topography Mission
- 6.20. Spaceborne Radar System Summary
- 6.21. Radar Altimetry^^^
- 6.22. Passive Microwave Sensing
- 6.23. Basic Principles of Lidar
- 6.24. Lidar Data Analysis and Applications
- 6.25. Spaceborne Lidar
- 7.1. Introduction
- 7.2. Preprocessing of Images
- 7.3. Image Enhancement
- 7.4. Contrast Manipulation
- 7.5. Spatial Feature Manipulation
- 7.6. Multi-Image Manipulation
- 7.7. Image Classification
- 7.8. Supervised Classification
- 7.9. The Classification Stage
- 7.10. The Training Stage
- 7.11. Unsupervised Classification
- 7.12. Hybrid Classification
- 7.13. Classification of Mixed Pixels
- 7.14. The Output Stage and Post-Classification Smoothing
- 7.15. Object-Based Classification
- 7.16. Neural Network Classification
- 7.17. Classification Accuracy Assessment
- 7.18. Change Detection
- 7.19. Image Time Series Analysis
- 7.20. Data Fusion and GIS Integration
- 7.21. Hyperspectral Image Analysis
- 7.22^Radar Altimetry^^^
- Biophysical Modelling
- 7.23. Conclusion
- 8.1. Introduction
- 8.2. Land Use/Land Cover Mapping
- 8.3. Geologic and Soil Mapping
- 8.4. Agricultural Applications
- 8.5. Forestry Applications
- 8.6. Rangeland Applications
- 8.7. Water Resource Applications
- 8.8. Snow and Ice Applications
- 8.9. Urban and Regional Planning Applications
- 8.10. Wetland Mapping
- 8.11. Wildlife Ecology Applications
- 8.12. Archaeological Applications
- 8.13. Environmental Assessment and Protection
- 8.14. Natural Disaster Assessment
- 8.15. Principles of Landform Identification and Evaluation
- 8.16. Conclusion.