Lead-acid batteries for future automobiles / dited by J紲gen Garche, Eckhard Karden, Patrick T. Moseley, David A.J. Rand.

Saved in:
Bibliographic Details
Published: Amsterdam : Elsevier, 2017.
Online Access:
Other Authors:
Format: Electronic eBook


LEADER 00000cam a2200000Ma 4500
001 3048751
005 20210705091000.0
006 m o d
007 cr |n|||||||||
008 170224s2017 ne o 000 0 eng d
020 |a 9780444637031 (electronic bk.) 
020 |a 0444637036  |q (electronic bk.) 
020 |z 9780444637000 
020 |z 0444637001 
024 |a 13517733 
035 |a ocn973773317 
035 |a (OCoLC)973773317  |z (OCoLC)973535206  |z (OCoLC)973900357  |z (OCoLC)974021485  |z (OCoLC)974300812  |z (OCoLC)974455230  |z (OCoLC)974562425  |z (OCoLC)974696133 
037 |a 994789  |b MIL 
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d N$T  |d EBLCP  |d NLE  |d OPELS  |d YDX  |d N$T  |d OCLCF  |d UPM  |d MERER  |d UMR  |d OCLCQ  |d OTZ  |d OCLCQ  |d IDEBK  |d UAB  |d VLB  |d STF  |d COO  |d D6H  |d KNOVL  |d ERL  |d DKU  |d U3W  |d CEF  |d OCLCQ  |d UMR  |d WYU  |d LVT  |d OCLCQ  |d UKMGB  |d OCLCQ  |d S2H 
050 4 |a TL272 
072 7 |a TEC  |x 009000  |2 bisacsh 
082 0 4 |a 629.2542  |2 23 
097 |3 Bib#:  |a 3048751 
245 0 0 |a Lead-acid batteries for future automobiles /  |c dited by J紲gen Garche, Eckhard Karden, Patrick T. Moseley, David A.J. Rand. 
260 |a Amsterdam :  |b Elsevier,  |c 2017. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Front Cover; Lead -- Acid Batteries for FutureAutomobiles; Lead-Acid Batteries for Future Automobiles; Copyright; Contents; List of Contributors; About the Editors; Preface; Abbreviations; 1 -- Overview; 1 -- Development trends for future automobiles and their demand on the battery; 1.1 Lead-acid batteries in automobiles: still good enough?; 1.2 Requirements in the automotive industry; 1.2.1 Requirements cascade and V-Model; 1.2.2 Robustness and reliability; 1.2.3 Materials, environmental, recycling; 1.3 Vehicle level requirements; 1.3.1 Power-supply system functions. 
505 8 |a 1.3.2 Drivetrain electrification functions1.4 Low-volt system topology options for advanced power supply and mild powertrain hybridization; 1.4.1 12-V single voltage single battery; 1.4.2 12-V dual (or multi) storage devices; 1.4.3 12-V+48-V dual voltage, dual-storage devices; 1.4.4 12-V+high voltage hybrid traction; 1.5 Upcoming storage system requirements; 1.5.1 Usable versus rated capacity; 1.5.2 Discharge power performance; 1.5.3 Shallow-cycle-life; service life in partial state-of-charge operation; 1.5.4 Dynamic charge-acceptance; 1.5.5 Battery monitoring and management. 
505 8 |a 1.5.6 Package and ambient conditions, weight1.6 Discussion; List of abbreviations; References; 2 -- Overview of batteries for future automobiles; 2.1 General requirements for batteries in electric vehicles; 2.2 Energy storage in lead-acid batteries; 2.3 Alkaline batteries; 2.3.1 Nickel-cadmium batteries; Automotive applications; Cell chemistry; Discharge processes; Thermodynamic data; Nickel electrode; Cadmium electrode; Open nickel-cadmium cells; Gas-tight nickel-cadmium cell; Operating behaviour and heat management; Charging methods. 
505 8 |a 2.3.2 Nickel-metal-hydride batteries (NiMH) Automotive applications; Cell chemistry; Discharge processes; Negative metal-hydride electrode; Operating behaviour and heat management; Cell design; 2.3.3 Nickel-zinc batteries; Automotive applications; Cell chemistry; Discharge reaction; Charge reaction; 2.4 High-temperature sodium batteries; 2.4.1 Automotive applications; 2.4.2 Sodium-nickel chloride battery (ZEBRA); Cell chemistry; Discharge reactions; Operating behaviour; 2.4.3 Sodium-sulfur battery. 
505 8 |a 2.5 Lithium-ion batteries2.5.1 Automotive applications; Battery electric vehicles; Stop-start vehicles/micro-/mild-hybrid electric vehicles; Challenges; Low temperature behaviour; High-temperature behaviour; Safety; Costs; 2.5.2 Cell chemistry; 2.5.3 Negative electrode materials (discharge: anodes); Graphite; Lithium titanate (LTO); Lithium alloys; 2.5.4 Positive electrode materials (discharge: cathodes); Lithium cobalt oxide (LCO); Lithium nickel oxides (LNO and NCA). 
520 8 |a Annotation  |b Lead-Acid Batteries for Future Automobiles provides an overview on the innovations that were recently introduced in automotive lead-acid batteries and other aspects of current research. Innovative concepts are presented, some of which aim to make lead-acid technology a candidate for higher levels of powertrain hybridization, namely 48-volt mild or high-volt full hybrids. Lead-acid batteries continue to dominate the market as storage devices for automotive starting and power supply systems, but are facing competition from alternative storage technologies and being challenged by new application requirements, particularly related to new electric vehicle functions and powertrain electrification. Presents an overview of development trends for future automobiles and the demands that they place on the batteryDescribes how to adapt LABs for use in micro and mild hybrid EVs via collector construction and materials, via carbon additives, via new cell construction (bipolar), and via LAB hybrids with Li-ion and supercap systemsSystem integration of LABs into vehicle power-supply and hybridization conceptsShort description of competitive battery technologies. 
650 0 |a Automobiles  |x Batteries. 
700 1 |a Garche, J紲gen. 
700 1 |a Karden, Eckhard,  |e editor. 
700 1 |a Moseley, Patrick T.,  |e editor. 
700 1 |a Rand, D. A. J.  |q (David Anthony James),  |d 1942-  |e editor. 
776 0 8 |i Print version:  |t Lead-acid batteries for future automobiles.  |d Amsterdam : Elsevier, 2017  |z 0444637001  |z 9780444637000  |w (OCoLC)959875612 
856 4 0 |u https://go.openathens.net/redirector/canterbury.ac.nz?url=https://www.sciencedirect.com/science/book/9780444637000  |y Connect to electronic resource  |t 0 
942 |a 05072021 
991 |a 2021-06-23 
992 |a Created by sico, 23/06/2021. Updated by fiwi, 05/07/2021. 
999 f f |i 5fb78f2e-6b72-5b00-b369-dbc775809307  |s 9d05b424-d4ba-5db0-a0f9-48a061b2a259  |t 0