Understanding nanomaterials / Malkiat S. Johal.

Saved in:
Bibliographic Details
Published: Boca Raton : CRC Press, c2011.
Main Author:
Subjects:
Format: Book
Table of Contents:
  • Machine generated contents note: 1.1. The Need for Nanoscience Education
  • 1.2. The Nanoscale Dimension and the Scope of Nanoscience
  • 1.3. Self-Assembly
  • 1.4. Supramolecular Science
  • 1.5. Sources of Information on Nanoscience
  • Chapter Overview
  • 2.1. Intermolecular Forces and Self-Assembly
  • 2.1.1. Ion-Ion Interactions
  • 2.1.2. Ion-Dipole Interactions
  • 2.1.3. Dipole-Dipole Interactions
  • 2.1.4. Interactions Involving Induced Dipoles
  • 2.1.5. Dispersion Forces
  • 2.1.6. Overlap Repulsion
  • 2.1.7. Total Intermolecular Potentials
  • 2.1.8. Hydrogen Bonds
  • 2.1.9. The Hydrophobic Effect
  • 2.2. Electrostatic Forces Between Surfaces: The Electrical Double Layer
  • 2.2.1. The Electrical Double Layer
  • 2.2.2. The Debye Length
  • 2.2.3. Interactions Between Charged Surfaces in a Liquid
  • 2.3. Intermolecular Forces and Aggregation
  • 2.4. Simple Models Describing Electronic Structure

  • 2.4.1. The Particle in a Box Model
  • 2.4.2. Conjugation in Organic Molecules
  • 2.4.3. Aggregation and Electronic Structure
  • 2.4.4. 1t-rr Stacking Interactions
  • References and Recommended Reading
  • End of Chapter Questions
  • Chapter Overview
  • 3.1. Fundamentals of Surface Science
  • 3.1.1. The Surface Energy of Solids and Liquids
  • 3.1.2. Surface Free Energy of Adsorbed Monolayers
  • 3.1.3. Contact Angles and Wetting Phenomena
  • 3.1.4. Nanomaterials and Superhydrophobic Surfaces
  • 3.2. Adsorption Phenomena: Self Assembled Monolayers
  • 3.2.1. Simple Adsorption Isotherms
  • 3.2.2. Other Useful Adsorption Isotherms
  • 3.3. Surfactant Chemistry
  • 3.3.1. Micelle and Microemulsion Formation
  • 3.3.2. The Determination of Surface Excess: The CMC and the Cross Sectional Area per Molecule
  • References and Recommended Reading
  • End of Chapter Questions
  • Chapter Overview
  • 4.1. Surface Tensiometry: The Surface Tensiometer
  • 4.2. Quartz Crystal Microbalance

  • 4.2.1. The Piezoelectric Effect
  • 4.2.2. QCM Principles
  • 4.2.3. QCM and Dissipation (D)
  • 4.2.4. Modern QCM-D Setup
  • 4.3. Ellipsometry
  • 4.3.1. Basic Principles of Electromagnetic Theory and Polarized Light
  • 4.3.2. Basic Principles of Ellipsometry
  • 4.3.3. Obtaining the Thickness of Films: Optical Parameters Del(A) and Psi (w)
  • 4.3.4. The Ellipsometer
  • 4.4. Surface Plasmon Resonance
  • 4.4.1. Principles of SPR
  • 4.4.2. SPR Instrument Setup
  • 4.5. Dual Polarization Interferometry
  • 4.5.1. Waveguide Basics
  • 4.5.2. Waveguide Interferometry and the Effective Refractive Index.
  • 4.5.3. Principles of Dual Polarization Interferometry
  • 4.5.4. Parameters of a DPI Instrument and Common Applications
  • 4.6. Spectroscopic Methods
  • 4.6.1. Interactions Between Light and Matter
  • 4.6.2. UV-Visible Spectroscopy
  • 4.6.2.1. Principles of UV-Visible Spectroscopy
  • 4.6.2.2. Setup of a UV-Visible Spectrophotometer
  • 4.6.3. The Absorption of Visible Light by a Nanofilm

  • 4.6.4. Molecular Fluorescence Spectroscopy
  • 4.6.4.1. Principles of Fluorescence and Fluorescence Quantum Yield
  • 4.6.4.2. Setup of a Fluorometer for Bulk Phase and Thin Film Fluorescence Measurements
  • 4.6.5. Vibrational Spectroscopy Methods
  • 4.6.5.1. Introduction to Vibrational Modes
  • 4.6.5.2. Attenuated Total Reflection IR Spectroscopy
  • 4.6.5.3. Reflection Absorption IR Spectroscopy
  • 4.6.6. Raman Spectroscopy
  • 4.6.6.1. Rayleigh and Raman Light Scattering
  • 4.6.6.2. Surface Enhanced Raman Spectroscopy
  • 4.7. Nonlinear Spectroscopic Methods
  • 4.7.1. An Introduction to Nonlinear Optics
  • 4.7.2. Second-Harmonic Generation
  • 4.7.3. Sum-Frequency Generation Spectroscopy
  • 4.8. X-Ray Spectroscopy
  • 4.8.1. Absorption
  • 4.8.2. Fluorescence
  • 4.8.3. Diffraction
  • 4.9. Imaging Nanostructures
  • 4.9.1. Imaging Ellipsometry
  • 4.9.1.1. Imaging Using Conventional Ellipsometry
  • 4.9.1.2. Principles of Modern Imaging Ellipsometry
  • 4.9.1.3. Methods for Extracting Ellipsometric Data in Imaging Ellipsometry

  • 4.9.1.4. Image Focusing
  • 4.9.1.5. Resolution of an Imaging Ellipsometer.
  • 4.9.2. Scanning Probe Methods
  • 4.9.2.1. Scanning Tunneling Microscopy
  • 4.9.2.2. Atomic Force Microscopy
  • 4.9.3. Transmission Electron Microscopy
  • 4.9.3.1. Principles of TEM
  • 4.9.3.2. TEM Instrumentation
  • 4.9.4. Near-Field Scanning Optical Microscopy
  • 4.9.4.1. History and Principles of NSOM
  • 4.9.4.2. Modern NSOM Instrumentation and Different NSOM Operating Modes
  • 4.10. Light Scattering Methods
  • 4.10.1. The Measurement of Scattered Light: Determining the Aggregation Number of Micelles
  • 4.10.2. Dynamic Light Scattering
  • References and Recommended Reading
  • End of Chapter Questions
  • Chapter Overview
  • 5.1. Supramolecular Machines
  • 5.1.1. Model Dye System
  • 5.1.2. Photorelaxation
  • 5.1.3. Formation and Properties of the Exciton
  • 5.2. Nanowires
  • 5.2.1. Basic Quantum Mechanics of Nanowires
  • 5.2.2. Conductivity
  • 5.2.3. Nanowire Synthesis
  • 5.2.4. Summary
  • 5.3. Carbon Nanotubes

  • 5.3.1. Carbon Nanotube Structure
  • 5.3.2. Some Properties of Nanotubes
  • 5.3.3. Methods for Growing Nanotubes
  • 5.3.3.1. Arc Discharge
  • 5.3.3.2. Laser Ablation
  • 5.3.3.3. Chemical Vapor Deposition
  • 5.3.4. Catalyst-Induced Growth Mechanism
  • 5.4. Quantum Dots
  • 5.4.1. Optical Properties
  • 5.4.2. Synthesis of Quantum Dots
  • 5.4.2.1. Precipitative Methods
  • 5.4.2.2. Reactive Methods in High-Boiling-Point Solvents
  • 5.4.2.3. Gas-Phase Synthesis of Semiconductor Nanoparticles
  • 5.4.2.4. Synthesis in a Structured Medium
  • 5.4.3. In Vivo Molecular and Cell Imaging
  • 5.5. Langmuir-Blodgett Films
  • 5.5.1. Langmuir Films
  • 5.5.2. Langmuir-Blodgett Films
  • 5.6. Polyelectrolytes
  • 5.6.1. Electrostatic Self-Assembly
  • 5.6.2. Charge Reversal and Interpenetration
  • 5.6.3. Multilayer Formation
  • 5.7. Model Phospholipid Bilayer Formation and Characterization
  • 5.7.1. Black Lipid Membranes
  • 5.7.2. Solid Supported Lipid Bilayers

  • 5.7.3. Polymer Cushioned Phospholipid Bilayers
  • 5.7.4. Fluorescence Recovery after Photobleaching
  • 5.7.5. Fluorescence Resonant Energy Transfer
  • 5.7.6. Fluorescence Interference Contrast Microscopy
  • 5.8. Self-Assembled Monolayers
  • 5.8.1. Thiols on Gold
  • 5.8.2. Silanes on Glass
  • 5.9. Patterning
  • 5.9.1. Optical Lithography
  • 5.9.2. Soft Lithography
  • 5.9.3. Nanosphere Lithography
  • 5.9.4. Patterning Using AFM
  • 5.9.5. Summary
  • 5.10. DNA and Lipid Microarrays
  • 5.10.1. Using a DNA Microarray
  • 5.10.2. Array Fabrication
  • 5.10.3. Optimization
  • 5.10.4. Applications
  • 5.10.5. Arrays of Supported Bilayers and Microfluidic Platforms
  • 5.10.6. Summary
  • Cited References
  • References and Recommended Reading
  • End of Chapter Questions.