Advanced phase-lock techniques / James A. Crawford.

Saved in:
Bibliographic Details
Published: Boston : Artech House, c2008.
Online Access:
Main Author:
Series:Artech House microwave library
Subjects:
Format: Book
Table of Contents:
  • Ch. 1. Phase-Locked Systems - A High-Level Perspective
  • 1.1. Phase-Locked Loop Basics
  • 1.2. Continuous-Time Control System Perspective for PLLs (High SNR)
  • 1.3. Time-Sampled PLL Systems (High SNR)
  • 1.4. Estimation Theoretic Perspective (Low SNR) for PLLs
  • 1.5. Summary
  • Ch. 2. Design Notes
  • 2.1. Summary of Classic Continuous-Time Type-2 Second-Order PLL Design Equations
  • 2.2. Continuous-Time Type-2 Fourth-Order PLLs
  • 2.3. Discretized PLLs
  • 2.4. Hybrid PLLs Incorporating Sample-and-Holds
  • 2.5. Communication Theory
  • 2.6. Spectral Relationships
  • 2.7. Trigonometry
  • 2.8. Laplace Transforms
  • 2.9. z-Transforms
  • 2.10. Probability and Stochastic Processes
  • 2.11. Numerical Simulation
  • 2.12. Calculus
  • 2.13. Butterworth Lowpass Filters
  • 2.14. Chebyshev Lowpass Filters
  • 2.15. Constants
  • Ch. 3. Fundamental Limits
  • 3.1. Phase Modulation and Bessel Functions
  • 3.2. Hilbert Transforms
  • 3.3. Cauchy-Schwarz Inequality
  • 3.4. RF Filtering Effects on Frequency Stability
  • 3.5. Chebyshev Inequality
  • 3.6. Chernoff Bound
  • 3.7. Cramer-Rao Bound
  • 3.8. Eigenfilters (Optimal Filters)
  • 3.9. Fano Broadband Matching Theorem
  • 3.10. Leeson-Scherer Phase Noise Model
  • 3.11. Thermal Noise Limits
  • 3.12. Nyquist Sampling Theorem
  • 3.13. Paley-Wiener Criterion
  • 3.14. Parseval's Theorem
  • 3.15. Poisson Sum
  • 3.16. Time-Bandwidth Product
  • 3.17. Matched-Filters for Deterministic Signals in Additive White Gaussian Noise (AWGN)
  • 3.18. Weak Law of Large Numbers
  • App. 3A. Maximum-Likelihood Frequency Estimator
  • App. 3B. Phase Probability Density Function for Sine Wave in AWGN
  • Ch. 4. Noise in PLL-Based Systems
  • 4.1. Introduction
  • 4.2. Sources of Noise
  • 4.3. Power Spectral Density Concept for Continuous-Time Stochastic Signals
  • 4.4. Power Spectral Density for Discrete-Time Sampled Systems
  • 4.5. Phase Noise First Principles
  • 4.6. Random Phase Noise
  • 4.7. Noise Impression on Time and Frequency Sources
  • App. 4A. Review of Stochastic Random Processes
  • App. 4B. Accurate Noise Modeling for Computer Simulations
  • App. 4C. Creating Arbitrary Noise Spectra in a Digital Signal Processing Environment
  • App. 4D. Noise in Direct Digital Synthesizers
  • Ch. 5. System Performance
  • 5.1. System Performance Overview
  • 5.2. Integrated Phase Noise
  • 5.3. Local Oscillators for Receive Systems
  • 5.4. Local Oscillators for Transmit Systems
  • 5.5. Local Oscillator Phase Noise Impact on Digital Communication Error Rate Performance
  • 5.6. Phase Noise Effects on OFDM Systems
  • 5.7. Phase Noise Effects on Spread-Spectrum Systems
  • 5.8. Phase 'Noise Impact for More Advanced Modulation Waveforms
  • 5.9. Clock Noise Impact on DAC Performance
  • 5.10. Clock Noise Impact on ADC Performance
  • App. 5A. Image Suppression and Error Vector Magnitude
  • App. 5B. Channel Capacity and Cutoff Rate
  • Ch. 6. Fundamental Concepts for Continuous-Time Systems
  • 6.1. Continuous Versus Discrete Time
  • 6.2. Basic Continuous-Time Phase-Locked Loops
  • 6.3. Additional Results for the Ideal Type-2 PLL
  • 6.4. Loop Filters
  • 6.5. More Complicated Loop Filters
  • 6.6. Type-3 PLL
  • 6.7. Haggai Constant Phase Margin Loop (9 dB per Octave)
  • 6.8. Pseudo-Continuous Phase Detector Models
  • 6.9. Stability Analysis
  • 6.10. Transient Response Evaluation for Continuous-Time Systems
  • App. 6A. Simplification of Linear Systems
  • App. 6B. Bandwidth Considerations for Continuous-Time Modeling of Time-Sampled Systems
  • App. 6C. Christiaan Huygens and Phase-Locked Pendulum Clocks
  • App. 6D. Admittance Matrix Methods for Analyzing Complex Loop Filters
  • Ch. 7. Fundamental Concepts for Sampled-Data Control Systems
  • 7.1. Sampled Signal Basics
  • 7.2. Relationships Between Continuous-Time and Discrete-Time Signal Representations
  • 7.3. Sampled-Time PLL
  • 7.4. Stability Assessment for Sampled Systems
  • 7.5. Time-Domain Response
  • 7.6. Closed-Form Results for Sampled PLLs
  • 7.7. Pseudo-Continuous Versus Sampled System Analysis
  • 7.8. Noise in Sampled Systems
  • App. 7A. Additional Closed-Form Results for Sampled PLLs
  • Ch. 8. Fractional-N Frequency Synthesizers
  • 8.1. A Brief History of Fractional-N Synthesis
  • 8.2. Analog-Based Fractional-N Synthesis
  • 8.3. [Delta-Sigma] Modulator Fundamentals
  • 8.4. [Delta-Sigma] Frequency Synthesis Architectures
  • 8.5. Single-Bit Versus Multiple-Bit Output [Delta-Sigma] Modulators
  • 8.6. Combating Discrete Spurious Tones
  • 8.7. [Delta-Sigma] Fractional-N Caveats to Avoid
  • 8.8. Final Recommendations
  • Ch. 9. Oscillators
  • 9.1. Linear Oscillator Theory
  • 9.2. Oscillator Configurations
  • 9.3. Oscillator Usage in Phase-Locked Loops
  • 9.4. Oscillator Impairments
  • 9.5. Classical Phase Noise Models
  • 9.6. Nonlinear Oscillators and Noise
  • Ch. 10. Clock and Data Recovery
  • 10.1. Clock and Data Recovery Basics
  • 10.2. Signaling Waveforms
  • 10.3. Intersymbol Interference
  • 10.4. Bit Error Rate
  • 10.5. Optimal Timing Recovery Methods
  • 10.6. Bit Error Rate Including Time Recovery
  • 10.7. Final Thoughts
  • App. 10A. BER Calculation Using the Gil-Pelaez Theorem.